Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Nature ; 612(7940): 534-539, 2022 12.
Article in English | MEDLINE | ID: mdl-36477528

ABSTRACT

An effective vaccine is needed for the prevention and elimination of malaria. The only immunogens that have been shown to have a protective efficacy of more than 90% against human malaria are Plasmodium falciparum (Pf) sporozoites (PfSPZ) manufactured in mosquitoes (mPfSPZ)1-7. The ability to produce PfSPZ in vitro (iPfSPZ) without mosquitoes would substantially enhance the production of PfSPZ vaccines and mosquito-stage malaria research, but this ability is lacking. Here we report the production of hundreds of millions of iPfSPZ. iPfSPZ invaded human hepatocytes in culture and developed to mature liver-stage schizonts expressing P. falciparum merozoite surface protein 1 (PfMSP1) in numbers comparable to mPfSPZ. When injected into FRGhuHep mice containing humanized livers, iPfSPZ invaded the human hepatocytes and developed to PfMSP1-expressing late liver stage parasites at 45% the quantity of cryopreserved mPfSPZ. Human blood from FRGhuHep mice infected with iPfSPZ produced asexual and sexual erythrocytic-stage parasites in culture, and gametocytes developed to PfSPZ when fed to mosquitoes, completing the P. falciparum life cycle from infectious gametocyte to infectious gametocyte without mosquitoes or primates.


Subject(s)
Plasmodium falciparum , Sporozoites , Animals , Humans , Mice , Culicidae/parasitology , Malaria/parasitology , Malaria/prevention & control , Malaria Vaccines/biosynthesis , Malaria Vaccines/chemistry , Malaria, Falciparum/parasitology , Plasmodium falciparum/growth & development , Sporozoites/growth & development , Sporozoites/pathogenicity , Hepatocytes/parasitology , Liver/parasitology , Merozoite Surface Protein 1 , Erythrocytes/parasitology , In Vitro Techniques
2.
Nat Med ; 27(9): 1636-1645, 2021 09.
Article in English | MEDLINE | ID: mdl-34518679

ABSTRACT

The radiation-attenuated Plasmodium falciparum sporozoite (PfSPZ) vaccine provides protection against P. falciparum infection in malaria-naïve adults. Preclinical studies show that T cell-mediated immunity is required for protection and is readily induced in humans after vaccination. However, previous malaria exposure can limit immune responses and vaccine efficacy (VE) in adults. We hypothesized that infants with less previous exposure to malaria would have improved immunity and protection. We conducted a multi-arm, randomized, double-blind, placebo-controlled trial in 336 infants aged 5-12 months to determine the safety, tolerability, immunogenicity and efficacy of the PfSPZ Vaccine in infants in a high-transmission malaria setting in western Kenya ( NCT02687373 ). Groups of 84 infants each received 4.5 × 105, 9.0 × 105 or 1.8 × 106 PfSPZ Vaccine or saline three times at 8-week intervals. The vaccine was well tolerated; 52 (20.6%) children in the vaccine groups and 20 (23.8%) in the placebo group experienced related solicited adverse events (AEs) within 28 d postvaccination and most were mild. There was 1 grade 3-related solicited AE in the vaccine group (0.4%) and 2 in the placebo group (2.4%). Seizures were more common in the highest-dose group (14.3%) compared to 6.0% of controls, with most being attributed to malaria. There was no significant protection against P. falciparum infection in any dose group at 6 months (VE in the 9.0 × 105 dose group = -6.5%, P = 0.598, the primary statistical end point of the study). VE against clinical malaria 3 months after the last dose in the highest-dose group was 45.8% (P = 0.027), an exploratory end point. There was a dose-dependent increase in antibody responses that correlated with VE at 6 months in the lowest- and highest-dose groups. T cell responses were undetectable across all dose groups. Detection of Vδ2+Vγ9+ T cells, which have been correlated with induction of PfSPZ Vaccine T cell immunity and protection in adults, were infrequent. These data suggest that PfSPZ Vaccine-induced T cell immunity is age-dependent and may be influenced by Vδ2+Vγ9+ T cell frequency. Since there was no significant VE at 6 months in these infants, these vaccine regimens will likely not be pursued further in this age group.


Subject(s)
Malaria Vaccines/administration & dosage , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Vaccines, Attenuated/administration & dosage , Adult , Antibody Formation/drug effects , Antibody Formation/immunology , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , Double-Blind Method , Humans , Infant , Kenya/epidemiology , Malaria Vaccines/adverse effects , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Malaria, Falciparum/prevention & control , Plasmodium falciparum/pathogenicity , Sporozoites/drug effects , Sporozoites/pathogenicity , T-Lymphocytes/drug effects , Vaccination , Vaccines, Attenuated/adverse effects
3.
PLoS One ; 16(7): e0254498, 2021.
Article in English | MEDLINE | ID: mdl-34252120

ABSTRACT

To screen for additional vaccine candidate antigens of Plasmodium pre-erythrocytic stages, fourteen P. falciparum proteins were selected based on expression in sporozoites or their role in establishment of hepatocyte infection. For preclinical evaluation of immunogenicity of these proteins in mice, chimeric P. berghei sporozoites were created that express the P. falciparum proteins in sporozoites as an additional copy gene under control of the uis4 gene promoter. All fourteen chimeric parasites produced sporozoites but sporozoites of eight lines failed to establish a liver infection, indicating a negative impact of these P. falciparum proteins on sporozoite infectivity. Immunogenicity of the other six proteins (SPELD, ETRAMP10.3, SIAP2, SPATR, HT, RPL3) was analyzed by immunization of inbred BALB/c and outbred CD-1 mice with viral-vectored (ChAd63 or ChAdOx1, MVA) vaccines, followed by challenge with chimeric sporozoites. Protective immunogenicity was determined by analyzing parasite liver load and prepatent period of blood stage infection after challenge. Of the six proteins only SPELD immunized mice showed partial protection. We discuss both the low protective immunogenicity of these proteins in the chimeric rodent malaria challenge model and the negative effect on P. berghei sporozoite infectivity of several P. falciparum proteins expressed in the chimeric sporozoites.


Subject(s)
Malaria, Falciparum/parasitology , Plasmodium falciparum/pathogenicity , Animals , Antibodies, Protozoan/immunology , Antibodies, Protozoan/metabolism , Antigens, Protozoan/immunology , Antigens, Protozoan/metabolism , Erythrocytes/metabolism , Female , Malaria Vaccines/therapeutic use , Malaria, Falciparum/genetics , Malaria, Falciparum/immunology , Mice , Mice, Inbred BALB C , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Ribosomal Protein L3 , Sporozoites/pathogenicity
4.
Life Sci Alliance ; 4(7)2021 07.
Article in English | MEDLINE | ID: mdl-34135099

ABSTRACT

Progress towards a protective vaccine against malaria remains slow. To date, only limited protection has been routinely achieved following immunisation with either whole-parasite (sporozoite) or subunit-based vaccines. One major roadblock to vaccine progress, and to pre-erythrocytic parasite biology in general, is the continued reliance on manual salivary gland dissection for sporozoite isolation from infected mosquitoes. Here, we report development of a multi-step method, based on batch processing of homogenised whole mosquitoes, slurry, and density-gradient filtration, which combined with free-flow electrophoresis rapidly produces a pure, infective sporozoite inoculum. Human-infective Plasmodium falciparum and rodent-infective Plasmodium berghei sporozoites produced in this way are two- to threefold more infective than salivary gland dissection sporozoites in in vitro hepatocyte infection assays. In an in vivo rodent malaria model, the same P. berghei sporozoites confer sterile protection from mosquito-bite challenge when immunisation is delivered intravenously or 60-70% protection when delivered intramuscularly. By improving purity, infectivity, and immunogenicity, this method represents a key advancement in capacity to produce research-grade sporozoites, which should impact delivery of a whole-parasite based malaria vaccine at scale in the future.


Subject(s)
Culicidae/parasitology , Malaria/prevention & control , Plasmodium berghei/pathogenicity , Plasmodium falciparum/pathogenicity , Sporozoites/pathogenicity , Animals , Disease Models, Animal , Drosophila , Hep G2 Cells , Humans , Immunization , Male , Rats , Sporozoites/growth & development
5.
Front Immunol ; 12: 625712, 2021.
Article in English | MEDLINE | ID: mdl-33815377

ABSTRACT

Malaria can cause life-threatening complications which are often associated with inflammatory reactions. More subtle, but also contributing to the burden of disease are chronic, often subclinical infections, which result in conditions like anemia and immunologic hyporesponsiveness. Although very frequent, such infections are difficult to study in endemic regions because of interaction with concurrent infections and immune responses. In particular, knowledge about mechanisms of malaria-induced immunosuppression is scarce. We measured circulating immune cells by cytometry in healthy, malaria-naïve, adult volunteers undergoing controlled human malaria infection (CHMI) with a focus on potentially immunosuppressive cells. Infectious Plasmodium falciparum (Pf) sporozoites (SPZ) (PfSPZ Challenge) were inoculated during two independent studies to assess malaria vaccine efficacy. Volunteers were followed daily until parasites were detected in the circulation by RT-qPCR. This allowed us to analyze immune responses during pre-patency and at very low parasite densities in malaria-naïve healthy adults. We observed a consistent increase in circulating polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) in volunteers who developed P. falciparum blood stage parasitemia. The increase was independent of preceding vaccination with a pre-erythrocytic malaria vaccine. PMN-MDSC were functional, they suppressed CD4+ and CD8+ T cell proliferation as shown by ex-vivo co-cultivation with stimulated T cells. PMN-MDSC reduced T cell proliferation upon stimulation by about 50%. Interestingly, high circulating PMN-MDSC numbers were associated with lymphocytopenia. The number of circulating regulatory T cells (Treg) and monocytic MDSC (M-MDSC) showed no significant parasitemia-dependent variation. These results highlight PMN-MDSC in the peripheral circulation as an early indicator of infection during malaria. They suppress CD4+ and CD8+ T cell proliferation in vitro. Their contribution to immunosuppression in vivo in subclinical and uncomplicated malaria will be the subject of further research. Pre-emptive antimalarial pre-treatment of vaccinees to reverse malaria-associated PMN-MDSC immunosuppression could improve vaccine response in exposed individuals.


Subject(s)
Cell Proliferation , Malaria, Falciparum/immunology , Myeloid-Derived Suppressor Cells/immunology , Plasmodium falciparum/immunology , Sporozoites/immunology , Antimalarials/therapeutic use , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cells, Cultured , Clinical Trials as Topic , Coculture Techniques , Host-Pathogen Interactions , Humans , Lymphocyte Activation , Malaria Vaccines/therapeutic use , Malaria, Falciparum/parasitology , Malaria, Falciparum/prevention & control , Myeloid-Derived Suppressor Cells/parasitology , Plasmodium falciparum/pathogenicity , Sporozoites/pathogenicity , Time Factors , Vaccination
6.
Sci Rep ; 11(1): 3090, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33542254

ABSTRACT

Malaria parasites develop as oocysts in the mosquito for several days before they are able to infect a human host. During this time, mosquitoes take bloodmeals to replenish their nutrient and energy reserves needed for flight and reproduction. We hypothesized that these bloodmeals are critical for oocyst growth and that experimental infection protocols, typically involving a single bloodmeal at the time of infection, cause nutritional stress to the developing oocysts. Therefore, enumerating oocysts disregarding their growth and differentiation state may lead to erroneous conclusions about the efficacy of transmission blocking interventions. Here, we examine this hypothesis in Anopheles coluzzii mosquitoes infected with the human and rodent parasites Plasmodium falciparum and Plasmodium berghei, respectively. We show that oocyst growth and maturation rates decrease at late developmental stages as infection intensities increase; an effect exacerbated at very high infection intensities but fully restored with post infection bloodmeals. High infection intensities and starvation conditions reduce RNA Polymerase III activity in oocysts unless supplemental bloodmeals are provided. Our results suggest that oocysts respond to crowding and nutritional stress with a dormancy-like strategy, which urges the development of alternative methods to assess the efficacy of transmission blocking interventions.


Subject(s)
Malaria, Falciparum/metabolism , Oocysts/metabolism , Plasmodium falciparum/metabolism , Sporozoites/metabolism , Animals , Anopheles/parasitology , Humans , Immunologic Tests , Malaria, Falciparum/parasitology , Malaria, Falciparum/pathology , Mosquito Vectors/genetics , Mosquito Vectors/metabolism , Oocysts/growth & development , Plasmodium falciparum/growth & development , Plasmodium falciparum/pathogenicity , Sporozoites/pathogenicity
7.
PLoS One ; 15(6): e0233840, 2020.
Article in English | MEDLINE | ID: mdl-32555601

ABSTRACT

BACKGROUND: Immunization with radiation-attenuated sporozoites (RAS) by mosquito bite provides >90% sterile protection against Plasmodium falciparum (Pf) malaria in humans. RAS invade hepatocytes but do not replicate. CD8+ T cells recognizing parasite-derived peptides on the surface of infected hepatocytes are likely the primary protective mechanism. We conducted a randomized clinical trial of RAS immunization to assess safety, to achieve 50% vaccine efficacy (VE) against controlled human malaria infection (CHMI), and to generate reagents from protected and non-protected subjects for future identification of protective immune mechanisms and antigens. METHODS: Two cohorts (Cohort 1 and Cohort 2) of healthy, malaria-naïve, non-pregnant adults age 18-50 received five monthly immunizations with infected (true-immunized, n = 21) or non-infected (mock-immunized, n = 5) mosquito bites and underwent homologous CHMI at 3 weeks. Immunization parameters were selected for 50% protection based on prior clinical data. Leukapheresis was done to collect plasma and peripheral blood mononuclear cells. RESULTS: Adverse event rates were similar in true- and mock-immunized subjects. Two true- and two mock-immunized subjects developed large local reactions likely caused by mosquito salivary gland antigens. In Cohort 1, 11 subjects received 810-1235 infected bites; 6/11 (55%) were protected against CHMI vs. 0/3 mock-immunized and 0/6 infectivity controls (VE 55%). In Cohort 2, 10 subjects received 839-1131 infected bites with a higher first dose and a reduced fifth dose; 9/10 (90%) were protected vs. 0/2 mock-immunized and 0/6 controls (VE 90%). Three/3 (100%) protected subjects administered three booster immunizations were protected against repeat CHMI vs. 0/6 controls (VE 100%). Cohort 2 uniquely showed a significant rise in IFN-γ responses after the third and fifth immunizations and higher antibody responses to CSP. CONCLUSIONS: PfRAS were generally safe and well tolerated. Cohort 2 had a higher first dose, reduced final dose, higher antibody responses to CSP and significant rise of IFN-γ responses after the third and fifth immunizations. Whether any of these factors contributed to increased protection in Cohort 2 requires further investigation. A cryobank of sera and cells from protected and non-protected individuals was generated for future immunological studies and antigen discovery. TRIAL REGISTRATION: ClinicalTrials.gov NCT01994525.


Subject(s)
Insect Bites and Stings/immunology , Malaria/prevention & control , Sporozoites/immunology , Vaccination/methods , Vaccines, Attenuated/adverse effects , Adult , Animals , Anopheles/parasitology , Anopheles/physiology , Female , Gamma Rays , Humans , Malaria/immunology , Male , Middle Aged , Mosquito Vectors/parasitology , Mosquito Vectors/physiology , Plasmodium falciparum/growth & development , Plasmodium falciparum/immunology , Plasmodium falciparum/pathogenicity , Protozoan Proteins/immunology , Sporozoites/pathogenicity , Sporozoites/radiation effects , Vaccination/adverse effects
8.
JCI Insight ; 5(13)2020 07 09.
Article in English | MEDLINE | ID: mdl-32484795

ABSTRACT

Whole-sporozoite vaccines engender sterilizing immunity against malaria in animal models and importantly, in humans. Gene editing allows for the removal of specific parasite genes, enabling generation of genetically attenuated parasite (GAP) strains for vaccination. Using rodent malaria parasites, we have previously shown that late liver stage-arresting replication-competent (LARC) GAPs confer superior protection when compared with early liver stage-arresting replication-deficient GAPs and radiation-attenuated sporozoites. However, generating a LARC GAP in the human malaria parasite Plasmodium falciparum (P. falciparum) has been challenging. Here, we report the generation and characterization of a likely unprecedented P. falciparum LARC GAP generated by targeted gene deletion of the Mei2 gene: P. falciparum mei2-. Robust exoerythrocytic schizogony with extensive cell growth and DNA replication was observed for P. falciparum mei2- liver stages in human liver-chimeric mice. However, P. falciparum mei2- liver stages failed to complete development and did not form infectious exoerythrocytic merozoites, thereby preventing their transition to asexual blood stage infection. Therefore, P. falciparum mei2- is a replication-competent, attenuated human malaria parasite strain with potentially increased potency, useful for vaccination to protect against P. falciparum malaria infection.


Subject(s)
Malaria Vaccines/pharmacology , Malaria, Falciparum/prevention & control , Malaria/prevention & control , Parasites/drug effects , Sporozoites/pathogenicity , Animals , Humans , Liver/immunology , Malaria/parasitology , Malaria, Falciparum/drug therapy , Parasites/immunology , Parasites/pathogenicity , Plasmodium falciparum/genetics , Plasmodium yoelii/immunology , Vaccination/methods , Vaccines, Attenuated/immunology
9.
Nat Med ; 26(7): 1135-1145, 2020 07.
Article in English | MEDLINE | ID: mdl-32451496

ABSTRACT

The circumsporozoite protein of the human malaria parasite Plasmodium falciparum (PfCSP) is the main target of antibodies that prevent the infection and disease, as shown in animal models. However, the limited efficacy of the PfCSP-based vaccine RTS,S calls for a better understanding of the mechanisms driving the development of the most potent human PfCSP antibodies and identification of their target epitopes. By characterizing 200 human monoclonal PfCSP antibodies induced by sporozoite immunization, we establish that the most potent antibodies bind around a conserved (N/D)PNANPN(V/A) core. High antibody affinity to the core correlates with protection from parasitemia in mice and evolves around the recognition of NANP motifs. The data suggest that the rational design of a next-generation PfCSP vaccine that elicits high-affinity antibody responses against the core epitope will promote the induction of protective humoral immune responses.


Subject(s)
Antibodies, Protozoan/immunology , Malaria Vaccines/immunology , Malaria, Falciparum/immunology , Plasmodium falciparum/immunology , Animals , Antibody Formation/immunology , Epitopes/immunology , Evolution, Molecular , Female , Humans , Immunity, Humoral , Malaria Vaccines/genetics , Malaria, Falciparum/genetics , Malaria, Falciparum/parasitology , Malaria, Falciparum/prevention & control , Mice , Plasmodium falciparum/pathogenicity , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Sporozoites/immunology , Sporozoites/pathogenicity
10.
Cell Transplant ; 29: 963689719884888, 2020.
Article in English | MEDLINE | ID: mdl-32180432

ABSTRACT

Apicomplexan parasites have challenged researchers for nearly a century. A major challenge to developing efficient treatments and vaccines is the parasite's ability to change its cellular and molecular makeup to develop intracellular and extracellular niches in its hosts. Ca2+ signaling is an important messenger for the egress of the malaria parasite from the infected erythrocyte, gametogenesis, ookinete motility in the mosquito, and sporozoite invasion of mammalian hepatocytes. Calcium-dependent protein kinases (CDPKs) have crucial functions in calcium signaling at various stages of the parasite's life cycle; this therefore makes them attractive drug targets against malaria. Here, we summarize the functions of the various CDPK isoforms in relation to the malaria life cycle by emphasizing the molecular mechanism of developmental progression within host tissues. We also discuss the current development of anti-malarial drugs, such as how specific bumped kinase inhibitors (BKIs) for parasite CDPKs have been shown to reduce infection in Toxoplasma gondii, Cryptosporidium parvum, and Plasmodium falciparum. Our suggested combinations of BKIs, artemisinin derivatives with peroxide bridge, and inhibitors on the Ca(2+)-ATPase PfATP6 as a potential target should be inspected further as a treatment against malaria.


Subject(s)
Antimalarials/therapeutic use , Malaria/parasitology , Protein Kinases/metabolism , Sporozoites/drug effects , Sporozoites/metabolism , Animals , Cryptosporidium parvum/drug effects , Cryptosporidium parvum/metabolism , Cryptosporidium parvum/pathogenicity , Female , Malaria/drug therapy , Malaria/metabolism , Male , Merozoites/drug effects , Merozoites/metabolism , Merozoites/pathogenicity , Models, Biological , Oocysts/drug effects , Oocysts/metabolism , Oocysts/pathogenicity , Plasmodium falciparum/drug effects , Plasmodium falciparum/metabolism , Plasmodium falciparum/pathogenicity , Protein Kinases/genetics , Sporozoites/pathogenicity , Toxoplasma/drug effects , Toxoplasma/metabolism , Toxoplasma/pathogenicity
11.
J Mol Biol ; 432(4): 1048-1063, 2020 02 14.
Article in English | MEDLINE | ID: mdl-31883801

ABSTRACT

Malaria vaccine candidate RTS,S/AS01 is based on the central and C-terminal regions of the circumsporozoite protein (CSP) of P. falciparum. mAb397 was isolated from a volunteer in an RTS,S/AS01 clinical trial, and it protects mice from infection by malaria sporozoites. However, mAb397 originates from the less commonly used VH3-15 germline gene compared to the VH3-30/33 antibodies generally elicited by RTS,S to the central NANP repeat region of CSP. The crystal structure of mAb397 with an NPNA4 peptide shows that the central NPNA forms a type I ß-turn and is the main recognition motif. In most anti-NANP antibodies studied to date, a germline-encoded Trp is used to engage the Pro in NPNA ß-turns, but here the Trp interacts with the first Asn. This "conserved" Trp, however, can arise from different germline genes and be located in the heavy or the light chain. Variation in the terminal ψ angles of the NPNA ß-turns results in different dispositions of the subsequent NPNA and, hence, different stoichiometries and modes of antibody binding to rsCSP. Diverse protective antibodies against NANP repeats are therefore not limited to a single germline gene response or mode of binding.


Subject(s)
Antigens, Protozoan/chemistry , Antigens, Protozoan/immunology , Plasmodium falciparum/immunology , Plasmodium falciparum/pathogenicity , Animals , Antibodies, Protozoan/immunology , Antibody Formation/genetics , Antibody Formation/physiology , Calorimetry , Enzyme-Linked Immunosorbent Assay , Epitopes/chemistry , Epitopes/immunology , Female , Malaria Vaccines/immunology , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Malaria, Falciparum/prevention & control , Mice , Mice, Inbred C57BL , Protozoan Proteins/chemistry , Protozoan Proteins/immunology , Sporozoites/immunology , Sporozoites/pathogenicity
12.
PLoS Pathog ; 15(9): e1007974, 2019 09.
Article in English | MEDLINE | ID: mdl-31536608

ABSTRACT

Plasmodium relapses are attributed to the activation of dormant liver-stage parasites and are responsible for a significant number of recurring malaria blood-stage infections. While characteristic of human infections caused by P. vivax and P. ovale, their relative contribution to malaria disease burden and transmission remains poorly understood. This is largely because it is difficult to identify 'bona fide' relapse infections due to ongoing transmission in most endemic areas. Here, we use the P. cynomolgi-rhesus macaque model of relapsing malaria to demonstrate that clinical immunity can form after a single sporozoite-initiated blood-stage infection and prevent illness during relapses and homologous reinfections. By integrating data from whole blood RNA-sequencing, flow cytometry, P. cynomolgi-specific ELISAs, and opsonic phagocytosis assays, we demonstrate that this immunity is associated with a rapid recall response by memory B cells that expand and produce anti-parasite IgG1 that can mediate parasite clearance of relapsing parasites. The reduction in parasitemia during relapses was mirrored by a reduction in the total number of circulating gametocytes, but importantly, the cumulative proportion of gametocytes increased during relapses. Overall, this study reveals that P. cynomolgi relapse infections can be clinically silent in macaques due to rapid memory B cell responses that help to clear asexual-stage parasites but still carry gametocytes.


Subject(s)
Immunity, Humoral , Malaria/immunology , Malaria/parasitology , Plasmodium cynomolgi/immunology , Plasmodium cynomolgi/pathogenicity , Animals , Antibodies, Protozoan/blood , B-Lymphocytes/immunology , Gene Expression Profiling , Host-Parasite Interactions/genetics , Host-Parasite Interactions/immunology , Humans , Immunity, Humoral/genetics , Immunoglobulin G/blood , Immunologic Memory/genetics , Macaca mulatta , Malaria/genetics , Malaria, Vivax/genetics , Malaria, Vivax/immunology , Malaria, Vivax/parasitology , Male , Parasitemia/genetics , Parasitemia/immunology , Parasitemia/parasitology , Plasmodium vivax/immunology , Plasmodium vivax/pathogenicity , Recurrence , Sporozoites/immunology , Sporozoites/pathogenicity
13.
Sci Rep ; 9(1): 13436, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31530862

ABSTRACT

Given the number of global malaria cases and deaths, the need for a vaccine against Plasmodium falciparum (Pf) remains pressing. Administration of live, radiation-attenuated Pf sporozoites can fully protect malaria-naïve individuals. Despite the fact that motility of these attenuated parasites is key to their infectivity and ultimately protective efficacy, sporozoite motility in human tissue (e.g. skin) remains wholly uncharacterized to date. We show that the ability to quantitatively address the complexity of sporozoite motility in human tissue provides an additional tool in the development of attenuated sporozoite vaccines. We imaged Pf movement in the skin of its natural host and compared wild-type and radiation-attenuated GFP-expressing Pf sporozoites. Using custom image analysis software and human skin explants we were able to quantitatively study their key motility features. This head-to-head comparison revealed that radiation attenuation impaired the capacity of sporozoites to vary their movement angle, velocity and direction, promoting less refined movement patterns. Understanding and overcoming these changes in motility will contribute to the development of an efficacious attenuated parasite malaria vaccine.


Subject(s)
Plasmodium falciparum/radiation effects , Skin/parasitology , Sporozoites/pathogenicity , Sporozoites/radiation effects , Animals , Anopheles/parasitology , Green Fluorescent Proteins/genetics , Host-Parasite Interactions , Humans , Image Processing, Computer-Assisted , Organisms, Genetically Modified , Plasmodium falciparum/genetics , Plasmodium falciparum/pathogenicity , Software
14.
EMBO J ; 38(15): e100984, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31368598

ABSTRACT

Microtubules are cytoskeletal filaments essential for many cellular processes, including establishment and maintenance of polarity, intracellular transport, division and migration. In most metazoan cells, the number and length of microtubules are highly variable, while they can be precisely defined in some protozoan organisms. However, in either case the significance of these two key parameters for cells is not known. Here, we quantitatively studied the impact of modulating microtubule number and length in Plasmodium, the protozoan parasite causing malaria. Using a gene deletion and replacement strategy targeting one out of two α-tubulin genes, we show that chromosome segregation proceeds in the oocysts even in the absence of microtubules. However, fewer and shorter microtubules severely impaired the formation, motility and infectivity of Plasmodium sporozoites, the forms transmitted by the mosquito, which usually contain 16 microtubules. We found that α-tubulin expression levels directly determined the number of microtubules, suggesting a high nucleation barrier as supported by a mathematical model. Infectious sporozoites were only formed in parasite lines featuring at least 10 microtubules, while parasites with 9 or fewer microtubules failed to transmit.


Subject(s)
Malaria/parasitology , Plasmodium/pathogenicity , Tubulin/genetics , Animals , Gene Deletion , Mice , Models, Theoretical , Plasmodium/genetics , Plasmodium/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Sporozoites/genetics , Sporozoites/growth & development , Sporozoites/pathogenicity , Tubulin/metabolism
15.
Methods Mol Biol ; 2013: 91-101, 2019.
Article in English | MEDLINE | ID: mdl-31267496

ABSTRACT

Human experimentation by deliberate infection with malarial parasites seems unethical yet has a long history in infectious disease research. After rigorous screening, volunteers are inoculated with Plasmodium sporozoites or blood stages and monitored under strict clinical supervision until they are treated with a licensed malaria drug and the infection is completely resolved. Historically, experimental Plasmodium challenge infections were applied to confirm that Anopheles mosquitoes were the malaria vector and to treat neurosyphilis in Treponema pallidum-infected patients. The lifesaving treatment with reliable parasite inoculation, monitoring, and drug cure was awarded with a Nobel Prize in 1927 and paved the way for human trials for clinical tests of candidate drugs and vaccines. Importantly, controlled human malaria infection (CHMI) studies are indispensable to bridge the major gap between phase I safety and phase II field trials. Here, we describe the biological basis, historical experiences, applications, and ethical considerations for CHMI studies. Acceleration of antimalarial drug and vaccine development remains a priority in medical research and critically depends on capacity building for CHMI studies.


Subject(s)
Plasmodium/pathogenicity , Animals , Clinical Trials as Topic , Humans , Malaria/diagnosis , Malaria/prevention & control , Malaria/transmission , Parasites/pathogenicity , Sporozoites/pathogenicity , Vaccines/therapeutic use
16.
Methods Mol Biol ; 2013: 189-198, 2019.
Article in English | MEDLINE | ID: mdl-31267503

ABSTRACT

Vaccines that target the preerythrocytic phase of malaria hold great promise as elimination tools since they are the sole vaccines that can achieve sterile protection against a challenge. This chapter focuses on preerythrocytic stage vaccines based on live attenuated parasites. It first summarizes the main conclusions that have emerged from studies in rodents, which compared various parasite attenuation methods, and then presents the vaccination regimens that are currently being tested in humans.


Subject(s)
Malaria Vaccines/therapeutic use , Malaria/prevention & control , Animals , Humans , Malaria/immunology , Protozoan Proteins/metabolism , Sporozoites/immunology , Sporozoites/pathogenicity
17.
Sci Rep ; 9(1): 8386, 2019 06 10.
Article in English | MEDLINE | ID: mdl-31182757

ABSTRACT

A highly effective vaccine that confers sterile protection to malaria is urgently needed. Immunization under chemoprophylaxis with sporozoites (CPS) consistently confers high levels of protection in the Controlled Human Malaria infection (CHMI) model. To provide a broad, unbiased assessment of the composition and kinetics of direct ex vivo human immune responses to CPS, we profiled whole-blood transcriptomes by RNA-seq before and during CPS immunization and following CHMI challenge. Differential expression of genes enriched in modules related to T cells, NK cells, protein synthesis, and mitochondrial processes were detected in fully protected individuals four weeks after the first immunization. Non-protected individuals demonstrated transcriptomic changes after the third immunization and the day of treatment, with upregulation of interferon and innate inflammatory genes and downregulation of B-cell signatures. Protected individuals demonstrated more significant interactions between blood transcription modules compared to non-protected individuals several weeks after the second and third immunizations. These data provide insight into the molecular and cellular basis of CPS-induced immune protection from P. falciparum infection.


Subject(s)
Chloroquine/pharmacology , Malaria, Falciparum/drug therapy , Plasmodium falciparum/genetics , Transcriptome/drug effects , Animals , Antimalarials/pharmacology , B-Lymphocytes/drug effects , B-Lymphocytes/metabolism , Chemoprevention , Humans , Malaria Vaccines/genetics , Malaria Vaccines/pharmacology , Malaria, Falciparum/genetics , Malaria, Falciparum/metabolism , Malaria, Falciparum/parasitology , Plasmodium falciparum/pathogenicity , Sporozoites/drug effects , Sporozoites/genetics , Sporozoites/pathogenicity , Transcriptome/genetics , Vaccination
18.
Cell Microbiol ; 21(7): e13027, 2019 07.
Article in English | MEDLINE | ID: mdl-30941872

ABSTRACT

Coccidia are obligate intracellular protozoan parasites responsible for human and veterinary diseases. Eimeria tenella, the aetiologic agent of caecal coccidiosis, is a major pathogen of chickens. In Toxoplasma gondii, some kinases from the rhoptry compartment (ROP) are key virulence factors. ROP kinases hijack and modulate many cellular functions and pathways, allowing T. gondii survival and development. E. tenella's kinome comprises 28 putative members of the ROP kinase family; most of them are predicted, as pseudokinases and their functions have never been characterised. One of the predicted kinase, EtROP1, was identified in the rhoptry proteome of E. tenella sporozoites. Here, we demonstrated that EtROP1 is active, and the N-terminal extension is necessary for its catalytic kinase activity. Ectopic expression of EtROP1 followed by co-immunoprecipitation identified cellular p53 as EtROP1 partner. Further characterisation confirmed the interaction and the phosphorylation of p53 by EtROP1. E. tenella infection or overexpression of EtROP1 resulted both in inhibition of host cell apoptosis and G0/G1 cell cycle arrest. This work functionally described the first ROP kinase from E. tenella and its noncanonical structure. Our study provides the first mechanistic insight into host cell apoptosis inhibition by E. tenella. EtROP1 appears as a new candidate for coccidiosis control.


Subject(s)
Coccidiosis/genetics , Eimeria tenella/genetics , Membrane Proteins/genetics , Protozoan Proteins/genetics , Animals , Apoptosis/genetics , Chickens/parasitology , Coccidiosis/parasitology , Eimeria tenella/pathogenicity , G1 Phase Cell Cycle Checkpoints , Phosphotransferases/genetics , Proteome/genetics , Sporozoites/genetics , Sporozoites/pathogenicity , Toxoplasma/genetics , Toxoplasma/pathogenicity , Virulence Factors/genetics
19.
Sci Rep ; 9(1): 5772, 2019 04 08.
Article in English | MEDLINE | ID: mdl-30962458

ABSTRACT

Metabolic resistance to insecticides is threatening malaria control in Africa. However, the extent to which it impacts malaria transmission remains unclear. Here, we investigated the association between a marker of glutathione S-transferase mediated metabolic resistance and Plasmodium infection in field population of Anopheles funestus s.s. in comparison to the A296S-RDL target site mutation. The 119F-GSTe2 resistant allele was present in southern (Obout) (56%) and central (Mibellon) (25%) regions of Cameroon whereas the 296S-RDL resistant allele was detected at 98.5% and 15% respectively. The whole mosquito Plasmodium and sporozoite infection rates were 57% and 14.8% respectively in Obout (n = 508) and 19.7% and 5% in Mibellon (n = 360). No association was found between L119F-GSTe2 genotypes and whole mosquito infection status. However, when analyzing oocyst and sporozoite infection rates separately, the resistant homozygote 119F/F genotype was significantly more associated with Plasmodium infection in Obout than both heterozygote (OR = 2.5; P = 0.012) and homozygote susceptible (L/L119) genotypes (OR = 2.10; P = 0.013). In contrast, homozygote RDL susceptible mosquitoes (A/A296) were associated more frequently with Plasmodium infection than other genotypes (OR = 4; P = 0.03). No additive interaction was found between L119F and A296S. Sequencing of the GSTe2 gene showed no association between the polymorphism of this gene and Plasmodium infection. Glutathione S-transferase metabolic resistance is potentially increasing the vectorial capacity of resistant An. funestus mosquitoes. This could result in a possible exacerbation of malaria transmission in areas of high GSTe2-based metabolic resistance to insecticides.


Subject(s)
Anopheles/parasitology , Glutathione Transferase/genetics , Insect Proteins/genetics , Insecticide Resistance , Mosquito Vectors/parasitology , Animals , Anopheles/drug effects , Anopheles/genetics , Mosquito Vectors/drug effects , Mosquito Vectors/genetics , Mutation , Oocysts/pathogenicity , Plasmodium/pathogenicity , Sporozoites/pathogenicity
20.
Proc Natl Acad Sci U S A ; 116(20): 9979-9988, 2019 05 14.
Article in English | MEDLINE | ID: mdl-31028144

ABSTRACT

Cerebral malaria (CM) is a major cause of death due to Plasmodium infection. Both parasite and host factors contribute to the onset of CM, but the precise cellular and molecular mechanisms that contribute to its pathogenesis remain poorly characterized. Unlike conventional αß-T cells, previous studies on murine γδ-T cells failed to identify a nonredundant role for this T cell subset in experimental cerebral malaria (ECM). Here we show that mice lacking γδ-T cells are resistant to ECM when infected with Plasmodium berghei ANKA sporozoites, the liver-infective form of the parasite and the natural route of infection, in contrast with their susceptible phenotype if challenged with P. berghei ANKA-infected red blood cells that bypass the liver stage of infection. Strikingly, the presence of γδ-T cells enhanced the expression of Plasmodium immunogenic factors and exacerbated subsequent systemic and brain-infiltrating inflammatory αß-T cell responses. These phenomena were dependent on the proinflammatory cytokine IFN-γ, which was required during liver stage for modulation of the parasite transcriptome, as well as for downstream immune-mediated pathology. Our work reveals an unanticipated critical role of γδ-T cells in the development of ECM upon Plasmodium liver-stage infection.


Subject(s)
Intraepithelial Lymphocytes/physiology , Liver/immunology , Malaria, Cerebral/immunology , Plasmodium berghei/pathogenicity , Sporozoites/pathogenicity , Animals , Liver/parasitology , Male , Mice , Mice, Inbred C57BL , Sporozoites/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...